Quantum Speed-up for Approximating Partition Functions

نویسندگان

  • Pawel Wocjan
  • Chen-Fu Chiang
  • Anura Abeyesinghe
  • Daniel Nagaj
چکیده

We achieve a quantum speed-up of fully polynomial randomized approximation schemes (FPRAS) for estimating partition functions that combine simulated annealing with the Monte-Carlo Markov Chain method and use non-adaptive cooling schedules. The improvement in time complexity is twofold: a quadratic reduction with respect to the spectral gap of the underlying Markov chains and a quadratic reduction with respect to the parameter characterizing the desired accuracy of the estimate output by the FPRAS. Both reductions are intimately related and cannot be achieved separately. First, we use Grover’s fixed point search, quantum walks and phase estimation to efficiently prepare approximate coherent encodings of stationary distributions of the Markov chains. The speed-up we obtain in this way is due to the quadratic relation between the spectral and phase gaps of classical and quantum walks. Second, we generalize the method of quantum counting, showing how to estimate expected values of quantum observables. Using this method instead of classical sampling, we obtain the speed-up with respect to accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimizing Teleportation Cost in Multi-Partition Distributed Quantum Circuits

There are many obstacles in quantum circuits implementation with large scales, so distributed quantum systems are appropriate solution for these quantum circuits. Therefore, reducing the number of quantum teleportation leads to improve the cost of implementing a quantum circuit. The minimum number of teleportations can be considered as a measure of the efficiency of distributed quantum systems....

متن کامل

The complexity of approximating complex-valued Ising and Tutte partition functions with applications to quantum simulation

We study the complexity of approximately evaluating the Ising and Tutte partition functions with complex parameters. Our results are motivated by the study of the quantum complexity classes BQP and IQP. Recent results show how to encode quantum computations as evaluations of partition functions. These results rely on interesting and deep results about quantum computation in order to obtain hard...

متن کامل

A Partition Function Approximation Using Elementary Symmetric Functions

In statistical mechanics, the canonical partition function [Formula: see text] can be used to compute equilibrium properties of a physical system. Calculating [Formula: see text] however, is in general computationally intractable, since the computation scales exponentially with the number of particles [Formula: see text] in the system. A commonly used method for approximating equilibrium proper...

متن کامل

Error bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert spaces via a Taylor's type expansion

On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.

متن کامل

MLE-induced Likelihood for Markov Random Fields

Due to the intractable partition function, the exact likelihood function for a Markov random field (MRF), in many situations, can only be approximated. Major approximation approaches include pseudolikelihood [2] and Laplace approximation [33]. In this paper, we propose a novel way of approximating the likelihood function through first approximating the marginal likelihood functions of individua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008